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Iczkowski and Margrave's definition of electronegativity is critically discussed, and an alternative approach 
based on an antisymmetrized product of monoelectronic orbitals is described. The energies for various valency 
states, obtained from the barycenter of the energies of all the atomic states having a common Ms2 value, can 

be calculated fairly accurately from the formula: E = 22 Bx + 22 A +5y + / J A ~ (1 — S^), where B1A
+, and 

i ij ij 
A~ are constants, and i and ij represent any electron and electron pair, respectively. The extension of this 
method to molecular structures, which leads to a clear understanding of the concept of electronegativity (Xx = 
Bx' + 2_, C11Mx^) and of its relationship to the Coulomb integral, can serve as a basis for a self-consistent treat-

S^ r 

ment of molecular structure. 

I. Introduction.—The atomic terms for an atom X 
can be defined as the sum of those integrals in which the 
Hamiltonian represents the interaction of the core of X 
with the electrons around it, together with the inter­
actions between the electrons in the neighborhood of X. 

These terms, which appear in the quantum mechan­
ical treatment of molecules and atoms, represent in 
the latter case the energy of an isolated atom in a 
particular configuration. In Htickel's one-electron 
LCAO-MO approximation,l it reduces to the Coulomb 
integral 

a% = J*4>x*H<t>x d r = constant 

Under this condition, the successive addition of 
electrons to an atom (or a molecular orbital) produces 
equal energy increments, thus 

X + (0 electron), E = O 

X0 (1 electron), E = ax 

X - (2 electrons), E = 2ax 

which is never observed. For example, for hydrogen, 
H+ , E = 0; H0, E = -13 .6 e.v.; H~, E = -14.38 
e.v. This is a very poor approximation, and several 
empirical methods which usually introduce electro­
negativity have been proposed to account for inter-
electronic interactions.2 

One of the most promising methods of defining 
electronegativities has been developed recently by 
Iczkowski and Margrave,3 who drew attention to recent 
successful attempts to obtain electron affinities from 

(1) E. Hiickel, Z. Physik, 60, 423 (1930); 70,204(1931); 72,310(1931); 
76, 628 (1932). 

(2) H. O. Pritchard and F. H. Sumner, Proc. Roy. Soc. (London), A236, 
136 (1956). 

(3) R. P. Iczkowski and J. L. Margrave, J. Am. Chem. Soc, 83, 3547 
(1961). 

the extrapolation of successive ionization potentials. 
In particular, an equation of the form 

E(q)A = aq + bq2 + cq* + dq* + . (D 
where q is the number of electrons in the valence shell 
of nucleus A, and a, b, c, and d are coefficients, is a 
good approximation to the true equation for the energy 
of atoms in various states of ionization (all the electrons 
belonging to the same n — I shell). 

The differentiation of eq. 1 with respect to q gives 

dE/dq = a + 2bq + 3cq2 + 4dq* + (2) 

From the relationship between the energy increments 
for successive ionizations and q it is possible to de­
termine the coefficients a, b, c, and d. 

As shown in Fig. 1, these relationships are usually 
linear, so that only the first two terms need be con­
sidered for a limited range of ionization states. Then 

and 

E = aq + bq2 

dE/dq = a + 2bq 

(3) 

(4) 

The area below the graph (Fig. 1) for two values of q 
(gi and qi) thus gives the energy for the addition of 
<?2 — <?i electrons. This has been realized by Iczkowski 
and Margrave,3 Klixbull-J0rgensen,4 and Hinze, 
Whitehead, and Jaff£,6 who derived a very interesting 
definition of "orbital electronegativity." 

Electronegativity was originally defined by Pauling6 

as being the tendency for an atom in a molecule to 
(4) C. Klixbull-j0rgensen, "Orbitals in Atoms and Molecules," Aca­

demic Press, London, 1962, p. 85. 
(5) J. Hinze, M. A. Whitehead, and H. H. Jaffe, J. Am. Chem. Soc, 86, 

148 (1963). 
(6) L. Pauling, ibid., 54, 3.570 (1932). 
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Fig. 1.—Plot of differential atomic energy with respect to the 
number of electrons around the core. 

attract electrons to it. According to the above authors, 
this can be represented by (dE/dq), i.e., the potential 
around the atom. This definition implies several 
assumptions (see below) but has the advantage of 
giving a direct mathematical relationship between 
the energy and electronegativity of an atom, as readily 
shown by the following example for a monovalent 
atom, X. 

If q = 1 (valency state of X), eq. 3 gives 

E = a + b = Iv 

Similarly when 2 = 2 (valency state of X - ) 

E = 2a + 4b = Iv + Ev 

from which a = (3Iy — -Ev)/2 and b = (Ey — Iy)/2, 
where Iy is the ionization energy and Ey the electron 
affinity of X in its valency state. 

When q = 1 (valency state of X) the electronegativity 
is given by eq. 4 and leads to an expression similar to 
that proposed by Mulliken.7 

X = (dE/dq)Q _1=a + 2b = (Iy + Ey)/2 (5) 

It should be noted, however, that in order to represent 
the electronegativity of an atom in a molecule correctly, 
the atom must be considered in its valency state, and 
this requires the introduction of electron spin. For 
example, the electronegativity of chlorine, calculated 
from Mulliken's equation with the observed ionization 
potential 12.9 e.v. and electron affinity 3.7 e.v., leads to 
a very low value of the partial ionic character of HCl 

(7) R. S. Mulliken, J. Chem. Phys., 2, 782 (1934). 

compared with the experimental value. This has been 
explained by partial sp-hybridization in the chlorine 
atom. An alternative explanation, which does not 
exclude changes in hybridization has been given by 
Mulliken. It takes account of the fact that electro­
negativity is an orbital characteristic and, therefore, 
both the ionization potential and the electron affinity 
have to be measured for the same orbital. Thus the 
orbital electronegativity of chlorine in its valency state 
is (Iy + Ey)/2, where Iy is given by the electronic 
process 

required 
Cl(S2Px2Py2P.) > C l + (S 2PxW) + e - (Af. = 0) 

/v 

a n d n o t b y 

observed 
Cl(S2Px2Py2P,) > C l + (S 2 Px 2 PyP . ) + e~ (M, = 1) 

7 

Within this limitation, eq. 3 and 4 are consistent in 
relating the electronegativity to the charge on the 
atom.8 This definition of orbital electronegativity 
leads to several interesting conclusions, but also to 
some criticism. 

(a) As suggested by Hinze, et al.,b a molecule is 
stable when the tendency for an electron to go on to 
either atom (X and Y) is the same, i.e. 

(&£/&<?A), (bE/dqB) 1B = group electronegativity 

This means that the electronegativities of both atoms 
in the molecule become equal, as originally suggested 
by Sanderson9; since eq. 4 relates the electro­
negativity to the charge density q, it becomes possible 
to calculate the ionic character of the bonds.10 How­
ever, care should be taken in giving a value derived 
from separate atoms to this average group electronega­
tivity since E in dE/dq is now a molecular energy in­
cluding not only the initial atomic terms but also ex­
change terms.11 

(b) According to the above definition of electro­
negativity (eq. 5) the potential is determined by the 
total electron density around the atom. This defini­
tion implies two assumptions: (1) The occupation 
number q (number of electrons around the atom) may 
have both integral and nonintegral values. (2) The 
energy of an atom is a continuous and differentiable 
function of q. As pointed out by Hinze, Whitehead, 
and Jaffe\ strictly speaking, neither of these assump­
tions is valid. 

Nevertheless, from an LCAO-MO point of- view, 
a fractional occupation number of an atomic spin 
orbital can be obtained. However, eq. 3 does not 
allow a differentiation to be made between systems 
where one spin orbital contains one electron (case of a 

(8) Since there is a close relationship between electronegativity and 
the Coulomb integral a, these equations may possibly be used in calcula­
tions based, for example, on the o-technique [A. Streitwieser, Jr., J. Am. 
Chem. Soc, 82, 4123 (1960); G. W. Wheland and D. E. Mann, / . Chem. 
Phys., 17, 264 (1949)]. This technique is particularly successful when ap­
plied to molecules with nonuniform charge distributions (organic ions). 

If we assume that a 4- 2b = aAO and a>/9o ™ — 2b, eq. 4 becomes 

a = aAO + (1 — q)w(Sa 

which is similar to the formula proposed by Streitwieser. The coefficients 
orAO and ot would be atomic constants instead of molecular parameters. 

(9) R. T. Sanderson, Science, 114, 670 (1951). 
(10) R. Ferreira, Trans. Faraday Soc, 69, 1064, 1075 (1963). 
(11) For the sake of completion, it is noted that an ionic interaction also 

contributes to the molecular potential, especially in the case of polar mole­
cules. 
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hydrogen atom, where there is no repulsion) and sys­
tems in which two spin orbitals have each a fractional 
occupation number (case of 2 electrons with opposite 
spin, spending half of their life around each atom, as 
in the hydrogen molecule, where there is an electronic 
repulsion). 

(c) Since an electron does not screen itself, the po­
tential around the core should not depend upon the 
charge of the particle which is submitted to this 
potential; i.e., d£/dg ^ f(q). Furthermore, the 
law of coulombic attraction having the form Ze2/r, 
it follows that the mean attraction energy of an elec­
tron by the core (considered as a central field inter­
action) must have the form E = aq for a given core 
and fixed mean distance. Therefore, when only one 
electron is involved, the bq2 term in Iczkowski and 
Margrave's equation should vanish. 

Finally, it should be pointed out that the Coulomb 
integrals (diagonal terms in Hiickel's one-electron 
approximation) which have the dimensions of energy, 
are often equated to the ionization energy of the iso­
lated atoms,12 although experience has shown that in 
order to represent the charge distribution (and even 
the bonding energies13) satisfactorily, it should be 
related to the electronegativities of the atoms. It is 
difficult to reconcile these two interpretations and, as 
pointed out by Coulson and Longuet-Higgins,u it is 
a pity that no precise interpretation can be given to 
these terms. 

Although the definition of electronegativity presented 
above can readily be criticized, it cannot be denied 
that it shows some interesting qualitative aspects. 
For this reason, an alternative way of defining the 
electronegativity and the Coulomb integral is pro­
posed, according to which each electron is considered 
separately. This definition differs fundamentally but 
not formally from the preceding one and is derived 
directly from a theoretical approach. 

II. Theoretical Approach to Atomic Structure.— 
For a system of n electrons, the total wave function 
on which an Hamiltonian H operates, is given by the 
antisymmetrized product of the monoelectronic wave 
functions, as 

Xia(l) xi0(l) X»«(D 
Xla(2) Xi/3(2) *«(2) 

(6) 

where 3>A is the wave function corresponding to a con­
figuration A, with the electrons i distributed into spin 
orbitals XpS of spin 5 = a or /3. 

A. The Total Energy of an Atomic State.—Con­
sider an atom containing n valency electrons (1,2. . .i, 
j . . .n) moving in the field of a core made up of the 
nucleus and electrons in the inner shells. The Hamil­
tonian operator acting on the atomic wave function 
$A is16 

H E Hcoie(i) + Z -
i it Ta 

(12) In Hiickel's approximation, the total energy is given by E = Ma + 
w/3 where mfl represents the bond energy and na is the sum of the ionization 
potentials of the isolated atoms. 

(13) R. G. Pearson, J. Chem. Phys., 17, 969 (1949). 
(14) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. (London), 

A191, 39 (1947); A 19J1 16 (1947-1948). 

(a) HCOTe(i) is the energy operator acting on each 
electron i in the field of the core. This Hamiltonian 
involves a term —Ze2Jr^i which represents the electro­
static attraction between the nucleus of charge Ze and 
the electron *. 

According to Unsold's16 theorem, the core electrons 
produce a spherically symmetrical potential,17 which 
can be represented by a "central field approximation." 
The electrostatic repulsion between the electron i 
and the core electrons will therefore be Ce2Jr^n where 
Ce is a virtual negative charge at the center of the atom. 
Thus 

Ze* Ce2 (C - Z)e> 
-"core W = h = 

?Ni rNi ?Ni 

(b) e2Ay is the operator for electrostatic repulsion 
between electrons i and j , considered as particles 
whose motion is described by wave functions. The 
total Hamiltonian is therefore given by 

and the total energy for configuration A by 

Since the atomic spin orbitals are orthogonal and 
normalized, the total energy of a particular configura­
tion is given by the equation1819 

EA = Z / , + 1AE (Jv 
Q qr 

K9/) (7) 

where 

I1= fxqS*(i){C _ Z)e\qS,(t)dr, (8) 

is the core integral for the spin orbital XqSq 

Jqr = SXqS*(i)XrS*(j)- XqS9O)XrSr(MrATJ (9) 

is the Coulomb integral between the orbitals X8^5 and 
XrSr. Finally 

g2 

Kqr = S XqSg*(t)XrSr*(j) ~ XqSg (j) X rSr (i)d T,^Tj 
ra 

(10) 

is the exchange integral between XqSq and XrSr-
Kv' = Kqr when x« and Xr have the same spin, S, = 
S, and Kqr' = 0; when x« a n d Xr have opposite 
spin, Sq?± Sr. 

B. Procedure.—When the final objective is the 
calculation of molecular energies, it is not necessary to 
consider all the spectroscopic atomic states. We 
therefore propose a classification of atomic states by 
considering only those valence states which are neces­
sary for the calculation of molecular properties. Ac­
cordingly, the various atomic states will be those 
characterized by a particular value of Ms

2, i.e., the 

(15) M. G. Mayer and A. Sklar, / . Chem. Phys., 6, 645 (1938). 
(16) A. Unsaid, Ann. Physik, 82, 355 (1927). 
(17) It is understood that the inner shells containing the core electrons 

are complete. 
(18) J. C. Slater, Phys. Rev., 34, 1293 (1929). 
(19) E. U. Condon and G H Shortley, "The Theory of Atomic Spec­

tra," Cambridge University Press, Cambridge, 1953. 
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component of the spin angular momentum of the 
total system, on an arbitrarily chosen axis. 

In order to define the required groups of atomic 
states, the electrons are allocated to the various atomic 
orbitals (s, p, d, etc.) and given appropriate spins in 
accordance with the Pauli exclusion principle. 

When an atomic state cannot be defined unequiv­
ocally in this way (which happens when a common 
Ms

2 is found for several states, e.g., 1D and 1S), the 
center of gravity of the electronic levels or "bary-
center" of the states having a common Ms

2 for the 
same configuration will be used to determine the 
energy. To illustrate this, the important states for 
elements containing only s- and p-electrons in their 
valency shells, classified according to this definition, 
are given in Tables I and II. 

The theoretical calculation of the energy of the 
various atomic states requires a knowledge of the 
various integrals denned above (eq. 7, 8, 9, and 10). 

Usually an analytical form20 is given to the wave 
function XqSq which is then used to solve these in­
tegrals.21 

We suggest an alternative procedure, based on the 
physical interpretation of these integrals, which con­
sists in giving them numerical values, thus providing 
a semiempirical method similar to that of Pariser and 
Parr.22 

Thus the "Core integral" I1 (eq. 8) is the energy of 
an electron i in the atomic orbital Xq of spin Sq in the 
field of the core, and in the absence of interaction with 
other electrons in the same electron shell. 

This energy should be similar to that calculated 
for hydrogen-like atoms, and, for a given core, can be 
equated to a constant Bx where / is the azimuthal 
quantum number, characterizing the type of orbital 
(s, p, d. . . .)23 of the valency shell of atom X to which 
the energy B refers. 

The integrals Jqr (eq. 9) and Kq/ (eq. 10) represent, 
respectively, the Coulomb energy and the exchange 
energy of interaction between two electrons of two 
atomic spin orbitals q and r. Although the integrals 
Jqr do not depend on spin (since they are classical 
Coulomb interactions) the integrals Kq/ will differ 
from zero only when the two electrons occupy orbitals 
characterized by the same spin. The total interaction 
energy between two electrons with the same spin, 
the same principal quantum number, and with azimu­
thal quantum numbers / and /' will be 

Jw — K-w A-

Similarly, between two atoms of opposite spin the 
energy of interaction will be 

Jw = A~w 

According to our procedure of defining the various 
atomic states, A +

a, and A ~u< should remain constant 
only when orbitals / and /' have the same azimuthal 
quantum number (since we cannot decide which p- or 
d-orbital is used). 

(20) J. C. Slater, Phys. Rev., 36, 57 (1930); C. Zener, ibid.. 36, Sl (1930). 
(21) C. C. Roothaan, Revs. Mod. Phys.. 23, 69 (1951); J. Chem. Phys.. 

19, 1445 (1951). 
(22) R. Pariser and R. G. Parr, ibid., 81, 466, 767 (1953); J. A. Pople, 

Trans. Faraday Soc, 49, 1375 (1953). 
(23) For hydrogenic orbitals, Bx

28 and Bx^p should be equivalent. We 
always assume them to be different because s and p electrons interact dif­
ferently with the core electrons. This agrees with experimental observation. 

In order to simplify this treatment, we tentatively 
assume that, when the electrons belong to the same 
shell, A+U' and A~w, remain constant even if / and /' 
are not equal. There is no theoretical justificatipn for 
this but, owing to the difficulty of treating variable 
A's and since the total energy is relatively insensitive 
to such changes, we shall use this hypothesis. This 
leads to a diagonalization of the matrix, and we can de­
fine/4 x

+ , as the mean valueof Aw+, and Ax~ as the mean 
value of Aw~ for all the values of /. Ax

+ and Ax~ are 
therefore, the mean interaction energies between two 
electrons of the same spin and of opposite spin, re­
spectively, in each of the various states defined above. 
Equation 7 then reduces to the final form 

E = T.BJ + V^lAx •«« + AE^x-(I - h 

(11) 

where S,j is the Kronecker delta with <5y = 1 if the spins 
of i and j are parallel, and 8tj = 0 if the spins are 
antiparallel. 

For the various states characterized above, the 
formula reduces to the expressions which are given in 
the fifth column of Tables I and II. 

TABLE I 

CLASSIFICATION OP THE ATOMIC ENERGY LEVELS (GROUND 

STATE AND LOWER EXCITED STATE) 

Elec­
tronic 
dis­

order tribu-
no. ±M 8 tion "Barycenter" Energy 

1 VJ si *S B« 
2 0 s" is 2B8 + A -
3 i/, s2p 'P 2B8 + Bp + 2A ~ + A* 
4 0 s!p» (SiD + 1S + 3»P)/9 2B" + 2B" + \A - + 2A T 

5 1 s'p* >P 2B8 + 2BP + 3A - + 3A + 
6 i/j s"p> (10»D + 62P + 2>S)/18 2B8 + 3BP + 6A ~ + iA + 
7 '/, S2p» 'S 2Ba + 3BP + 4A~ + 6A* 
8 0 s*p« (5'D + IS + 3'P)/9 2B8 + 4BP + 9A ' + 6A * 
9 1 s'p« »P 2B" + 4BP + 8A- + TA + 

10 Vi s*ps 2P 2B« + SBP + 12A " + 94 * 
11 0 s'p« IS 2B' + 6B" + 16A ~ + 12A * 

TABLE II 

EXCITED ATOMIC ENERGY LEVELS 

Order 
no. 

12 
13 
14 
15 
16 
17 
18 

±M, 
1A 
l 
3A 
2 
3A 
l 
1A 

Electronic 
distribution 

P 
sp 
sp2 

sp3 

sp4 

sp6 

sp6 

"Bary­
center' ' 

2P 
3P 
4P 
6S 
4P 
3P 
2S 

Energy 

5 P 

B' + B" + A + 

B' + 2SP + 3A + 

B' + 3SP + 6A + 

B' + 4SP + 6A + + 4A ~ 
B' +5B" + 7A+ +8A-
B' + 6BP + 9A + + \2A 

Considering only the first two rows of the periodic 
table, the following atomic constants have to be de­
termined for each atom. These constants can be de-

Nucleus-electron 
attraction 

Hydrogen Bx
u 

1st row B5^Bx2P 

Electron-electron repulsion 

Ax- = ^ x - 1 8 " 

Ax- = ^x"2 8 2 3 = ^4x~2,2p = ^x-2P2P 
Ax

+ = .4X+ 2 8 2P = /Ix+2P2P 
2nd row BX

3'B3"B36 Ax" = ^x"3 8 3" = <4x~3*3p = 
^ - 3 S S d = ^ x -3p3p = ^x-SpSd = 

A -3d3d 

Ax
+ = /Ix

+3S3P = ^x
+SsSd = 

A +3p3p = £ +3p3d = A +3<i3<l 

termined by comparing the calculated and experi­
mental values of the energies for the various states 
given in Tables I and II. 
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TABLE III 

EXPERIMENTAL TRANSITION ENERGIES ( IN E.V.) FOR COMMON ATOMS (GROUND STATE AND LOWER EXCITED STATE) 

Transition 
between 

the states 
0-1 
2-1 

3-2 

5-3 
5-4 

7-5 

7-6 

9-7 

9-8 

10-9 
11-10 

1-12 

2-13 
3-14 

5-15 

7-16 

9-17 

10-18 

H 

13,595 
0,750 

Li Na K 

5.390 5.138 4.339 
0.82 0.47 [0.69] 

C 

64.476 
47.864 

24:376 

11.264 
1.00 

1.12 

Si 

45.13 
33.46 

16.34 

8.149 
0.646 

1.46 

N 

97.863 
74.450 

47.426 

29.605 
1.5047 

14.54 

2.515 

0.05 

P 

65.01 
51.35 

30.16 

19.65 
0.909 

11.0 

1.556 

0.77 

TABLE IV 

EXPERIMENTAL TRANSITION ENERGIES (IN E.V.] 

Li Na K 

1.847 2.103 1.613 

C 

6.488 
5 332 

4.181 

Si 

6.544 
5.479 

(4.4) 

N 

7.096 

5.846 

10.924 

O 

138.080 
113.873 

77.394 

54.934 
1.990 

35.146 

3.518 

13.614 

1.558 

1.465 

S 

88.03 
72.5 

47.29 

35.0 
1.154 

23.4 

2.036 

10.357 

0.942 

2.07 

F 

185.139 
157.117 

114.214 

87.23 
2.475 

62.646 

4.477 

34.98 

2.056 

17.42 
3.48 

Cl 

114.27 
96.7 

67.80 

53.5 
1.396 

39.90 

2.475 

23.80 

1.187 

13.01 
3.69 

I FOR COMMON ATOMS (EXCITED STATES) 

P 

7.084 

6.501 

7.397 

O 

7.475 

14.868 9 

15.656 8 

S 

.878 18. 

.963 20 

20 

F 

.860 12 

.456 11 

.89 

Cl 

.274 

.637 12 

Br 

35.9 

2.148 

21.6 

(1.22) 

11.84 
3.49 

Br 

.100 10 

10 

I 

19.09 

1.395 

10.454 
3.21 

I 

.391 

167 

The experimental energies of the various excited states 
are taken from the tables of atomic energy levels,24 

and the most likely values of the electron affinities, 
which are also necessary, have been taken from the 
literature.25 26 The differences in the energies between 
the various important states characterized above have 
been calculated for some common atoms and are given 
in Tables III and IV. 

The final objective of this treatment being the cal­
culation of bond properties, the method should be 
particularly accurate in the neighborhood of the valency 
state of each atom. For this reason the parameters 
A and B were calculated by comparing the experi­
mental energies of the states close to the normal 
valency state (usually the neutral atom) with the 
energy values calculated from eq. 11. 

TABLE V 

CALCULATED VALUES (IN E.V.) OF THE COEFFICIENTS A AND B 

FOR SOME COMMON ATOMS 

Atom 

H 
Li 
Na 
K 
C 
Si 
N 
P 
O 
S 
F 
Cl 
Br 
I 

B' 

- 1 3 . 5 9 5 
- 5 . 3 9 0 
- 5 . 1 3 8 
- 4 . 3 3 9 

- 4 9 . 8 8 4 
- 3 5 . 2 
- 6 9 . 5 9 3 
- 5 0 . 7 5 9 
- 9 6 . 2 4 7 
- 6 4 . 5 2 3 

-130 .174 

- 6 9 . 6 6 5 

B» 

- 3 . 5 4 3 
- 3 . 0 3 5 
- 2 . 7 2 6 

- 4 2 . 6 9 6 
- 2 8 . 8 6 2 
- 5 8 . 6 6 9 
- 4 3 . 3 6 2 
- 8 0 . 5 9 1 
- 5 5 . 2 6 

-109 .284 
- 7 3 . 6 7 8 
- 6 6 . 8 2 
- 5 9 . 4 9 8 

A-

12.845 
4.57 
4.668 
3.649 

11.144 
7.335 

11.975 
8.674 

13.707 
9.229 

15.996 
10.507 
9.57 
8.639 

A + 

10.144 
6.689 

10.718 
7.896 

12.149 
8.287 

13.94 
9.320 
8.350 
7.244 

C. Discussion.—In principle, eq. 11 enables the 
energy of the barycenter of the atomic states (as de-

(24) C. E. Moore, Natl. Bur. Stad. Circ. 467, U. S. Govt. Printing 
Office, Washington, D. C , 1949. 

(25) H. O. Pritchard, Chem. Rev., Sl, 529 (1953). 
(26) B. Edlen, J. Chem. Phys., 33, 98 (1960). 

fined above) to be calculated, when the inner shells of 
the core are entirely filled. 

Our results will now be compared with those given 
in the first section. If all the valency electrons belong 
to orbitals of the same type (same azimuthal quantum 
number) 

Bx = ^(constant) 

and if the exchange integrals K (eq. 10), which are 
small, are neglected 

A + = A ~ = constant = Ax 

Equation 11 then reduces to 

E = I X + 1AE Ax 

where i equals the number of electrons and ij is a pair 
of electrons; thus 

E = qBx + *^zJlAx 

where q is the occupation number. 
Assuming a = Bx — {A J2) and b = (A J2) we finally 

find 

E = aq + bqi 

which is analogous to the empirical formula proposed 
by Iczkowski and Margrave (eq. 3), which thus appears 
to be a particular case of eq. 11. For a given orbital, 
the parabolic relation E = aq + bq2 (eq. 3) is as valid 
as eq. 11. In this orbital, Bx is constant for the two 
electrons and K is exactly zero since the spins are 
necessarily opposed. 

The close agreement observed between the empirical 
equation (eq. 3) and the experimental values (Fig. 1) 
is also found with eq. 11. It should be noted, however, 
that this general formula may be applied equally well 
to all the valency states and it eliminates the necessity 
of a long and detailed calculation such as was made 
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by Hinze, et al., for each particular case.27 This has 
been illustrated in Table VI for the particular case of 
oxygen. 

TABLE VI 

COMPARISON BETWEEN EXPERIMENTAL AND CALCULATEI 

ENERGIES FOR VARIOUS STATES OF OXYGEN" 

Order 
no. 

15 
4 
5 

16 
6 
7 

17 
8 

18 
10 

11 

Electron 
distribution 

f2s2p2 

0+2<J2s22p2 

[2s22p2 

f2s2p4 

0 + <{2s22ps 

[2s22p3 

f2s2p<> 
O ^2s22p4 

[2s22p4 

0 - / 2 s 2 p ° 
\2s2sp6 

O"2 2s22p« 

T ^ . 

' !energy, 
± M s Exptl. 
2 56.235 
0 50.75 
1 48.76 
3A 28.48 
1A 17.132 
3A 13.914 

1 15.656 
0 1.558 
1 0 

Vt 
1A - 1 . 4 6 5 

0 (6.77)" 

Calcd. 

55.03 
45.61 
44.05 

29.27 
16.74 
13.616 

15.657 
1.558 

0 

14.19 
- 1 . 4 6 5 

9.219 

" The zero of energy is arbitrarily put for the normal state Of 
oxygen 2s22p4Ms = 1. b Estimated from lattice energy calcula­
tions; see E. C. Baughan, Trans. Faraday Soc, 57, 1863 (1961). 

These results show the validity of eq. 11, since the 
energy of many atomic states can readily be calcu­
lated to a reasonable degree of accuracy from the values 
of A and B alone. Similar agreement between ex­
perimental energies is obtained in other cases. 

There is, however, a fundamental difference between 
our method and the empirical equation, because we 
consider the electrons as particles. There are several 
consequences of this approach, which answers the criti­
cisms of the empirical method which we have discussed 
in the previous section. 

When the system contains one electron only in the 
valency shell, the energy E = Bx

1, so that the repulsion 
term A appears only when several electrons are in this 
shell. Interelectronic repulsions are thus introduced 
in a correct way as required in our preliminary discus­
sion. Moreover, the equation determining the energy 
is noncontinuous and cannot be differentiated with 
respect to total charge. The potential acting on an 
electron in the field of the other particles is obtained by 
dividing each term of the equation by the unit charge 
on the electron, i.e. 

dE/de< potential = £/e< = B'J + 
1 A E A'+ 8tj + V2E A'-(I -««,•) 

where B', A1+, A'~ are the potentials, equal to B, 
A +, and A~~ divided by e (the charge of an electron). 

Numerically this potential is equal to the ionization 
energy of electron <5j, and there is, therefore, no relation 
between this potential and the electronegativity of the 
atom. This can be easily understood since electro­
negativity is not a measurable atomic quantity. The 
fact that it is well represented by an empirical equation 
such as eq. 3 does not show that it is a definable atomic 
entity with the dimensions of a potential. It is only 
by the examination of atomic terms in molecules that 
an entity such as electronegativity can be defined as 
will be shown in the next section. 

III. Theoretical Approach to Molecular Struc­
tures.—For the study of molecular structures, the 
antisymmetrized product of the wave functions re­
mains essentially of the same form as in eq. 6, although 
the monoelectronic wave functions x's are now molecu­
lar wave functions. In the LCAO-MO method28 

X = E Cp4>P 
p 

where 0P are atomic spin orbitals and CP the variational 
coefficients. 

The Hamiltonian has the form 

H + E 
p2 pi 

~ + E ~ 
XY r X Y 

Solution of this problem leads to two types of terms: 
(a) atomic terms as described above, including all the 
integrals representing the interactions of a nucleus 
with the electrons around it, and between these elec­
trons around the nucleus; (b) molecular terms includ­
ing all the integrals appropriate to two nuclei, i.e., 
interactions between electrons localized on atomic 
orbitals of different atoms, interactions between a 
nucleus and an electron belonging to an atomic orbital 
of a different nucleus, and resonance integrals. These 
terms will be discussed in a forthcoming paper. 

The atomic terms are made up of the following three 
types of integral with the appropriate coefficients 

C x , 2 y > x , * « — t f > x r « d r (12) 

where CXr and 4>Xr represent, respectively, the coef­
ficient and the wave function of the spin orbital r of 
atom X 

CjO2Cx,2 S *X,*(t)*x/( j)-«Xr(» ')«XxO')dT jdT i 

(13) 

and 

Cxr C; X,- f 0Xr*O ' )0X,*( j ) — ^ X r ( i ) 0 X . ( ^ ) d r , d r j 

(14) 

These atomic integrals are of the type defined above, 
and therefore it is possible to a first approximation to 
give them the values already calculated, i.e. 

eq. 12 = Cx*Bx
r 

eq. 13 - eq. 14 = CX?CX?AX± 

The variational theorem requires that 

dE/bCXr — 0 for each Cx , 

which leads to 

dE/bCXr = 2CXr[Bx
r + E CxMx+ - E 

s ?*r 

bE' 

5Cx 

+ 
= 0 (15) 

E' is the energy corresponding to the molecular 
terms. For a homopolar molecule, e.g., H2, the spin 
orbitals lsa and ls/3 of each atom contribute one-half 

(27) J. Hinze and H. H. Jaffe, J. Am. Chem. Soc. 84, 540 (1962). (28) C. A. Coulson, Quart. Rev. (London), 1, 144 (1947). 
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to the two molecular spin orbitals,29 so that Cnr
2 = 

Cus2 = 0.5. Substituting these in eq. 15 gives 

dE/dCSr = 2Cnr[Bn' + 0.5A H- -E] + 
(dE'/dCHr) = 0 

In the secular equation which results from the varia­
tional treatment, the diagonal terms are formed mainly30 

from 

Now 

Bn' + 0.5.4H- - E 

Bn' + 0.5.4 H - = (I11 + En) /2 

is the neutral electronegativity of the atom. Our treat­
ment thus introduces electronegativity into the diagonal 
terms of the secular equation in a completely con­
sistent way. This quantity can be denned only in a 
molecular context, and it is important to realize that 
it has the dimensions of energy; it is in fact the energy 
of an electron in the field of the other bonding electrons 
and the core. When two electrons only are involved 
in one homopolar bond, the electronegativity is 

Bx + 0.5AX~ = (Iv + £ v ) / 2 

for each electron around each atom. 
It must be realized that electronegativity is not a 

measurable molecular constant, since it varies from 
molecule to molecule like the total energy (since it is 
a function of the variational parameters) and therefore 
a characteristic value cannot be given to it. 

A neutral electronegativity can, nevertheless, be 
defined, which is the electronegativity of an atom in a 
homopolar molecule (where the CXs

2 for all the bonding 
electrons are equal to 0.5). With this restriction, the 

(29) In the general case, Cx cannot be determined in advance, but 
starting with an initial arbitrary value the method can be made self-con­
sistent. 

(30) There is similarly a contribution from the bonding term, but this 
is small in comparison with the atomic term. 

neutral electronegativity can be calculated. The 
formula developed above for atomic energies (eq. 15) 
is particularly suitable for these calculations, and hence 
the electronegativities for a large number of valency and 
hybridized orbitals can readily be obtained. 

^ x = Bx' + £ Cx,V4 x+*„ + 

E CX,MX-(1 - U 
These are given in Table VII. 

TABLE VII 

NEUTRAL ELECTRONEGATIVITY OF SOME COMMON ATOMS 

A.tom 

H 
Li 
Na 
K 
C 

Si 

Valence 
s t a t e 

S 

S 

S 

S 

sp8 

didi n n 
tr tr tr n 
tetetete 
sp3 

didi n n 
tr tr tr n 
tetetete 

Orbi­
ta l 

t y p e 

S 

S 

S 

S 

S 

P 
a 

G 

(T 

S 

P 
a 
(7 

a 

Elec t ro ­
nega t i v i t y , 

e.v. 

7.17 
3.10 
2.80 
2.51 

12.38 
5.19 
8.79 
7.59 
6.99 

10.50 
4.16 
7.33 
6.27 
5.74 

Atom 

N 
P 
O 
S 
F 

Cl 
Br 
I 

Valence 
s t a t e 

S 2 p 3 

S 2 P 3 

S 2 P 4 

S 2 P 4 

S 2 p 5 

S 2P 5 

S 2P 6 

s2ps 

Orbi­
ta l 

t y p e 

P 
P 
P 
P 
P 

P 
P 
P 

Elec t ro ­
nega t iv i ty , 

e.v. 

7.30 
5.89 
9.10 
7.16 

11.48 

8.94 
8.28 
7.53 

As already pointed out, an exact calculation of the 
electronegativity and hence of the bond properties 
requires a knowledge of the coefficients of the atomic 
orbitals and of the molecular terms. These will be 
discussed in a forthcoming paper which describes a 
new self-consistent treatment of molecular structures. 
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Data originally calculated by Hirschfelder, Eyring, and Rosen on linear symmetrical H 3
+ are analyzed in 

terms of approximate natural orbitals. Every aspect of the analysis suggests that this form of H 3
+ is best 

described as a relatively normal single bond in which is embedded a third proton. Hopton and Linnett ( / . 
Chem. Soc, 1553 (1962)) drew the conclusion from the same data (without, however, using natural orbitals) 
that H 3

+ was best described by a nonpairing formulation. The present calculation and discussion does not 
support these authors' "propaganda against pairing." 

Introduction 

A recent paper by Hopton and Linnett2a discusses 
an old wave function of Hirschfelder, Eyring, and 
Rosen2b for linear H 3

+ in several approximations which 
they class as molecular orbital (MO), valence bond 
(VB), and nonpairing (NP) schemes, there being three 
of the latter considered. Hopton and Linnett maxi-

(1) Supported in part by grants from the U. S. Air Force Office of Scientific 
Research and from the U. ,S. National Science Foundation. 

(2) (a) J. D. Hopton and J. W. Linnett, / . Chem. Soc, 1553 (1962); (b) 
J. O. Hirschfelder, H. Eyring, and N. Rosen, J. Chem. Phys., 4, 130 (1936). 

mize the overlap between the respective wave functions 
for these schemes and the one computed by the varia­
tion method. They conclude that since the overlap 
for the NP functions is 0.997-0.998 whereas the MO 
and VB overlaps are 0.982 the NP formalism is "best" 
and that there is "no particular and special energy 
effect involved in 'the pairing of the electrons'." 
This is adduced to be further support to a rather general 
discussion of many molecular systems in terms of a 
"nonpairing" formalism.3 

(3) J. W. Linnett, J. Am. Chem. Soc, 83, 2643 (1961). 


